

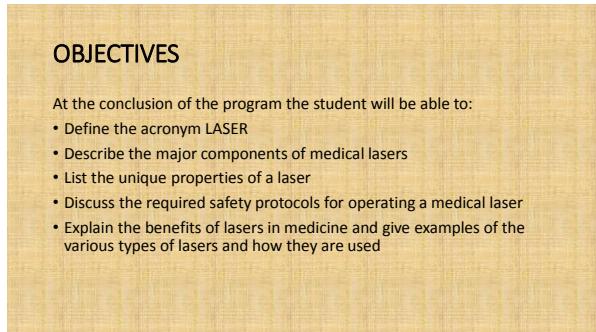
LASER SCIENCE AND SAFETY for the ASC

Karen Andersen, RN, BSN, MBA, LHRM, CPHRM, CRM

Presentation hosted by:

EXCELENTIA

The slide features a background of colorful laser beams radiating from a central point. The title is in large, bold, white capital letters. The author's name and credentials are in a smaller, white font. The host logo is a small square with a stylized globe and the word "EXCELENTIA".

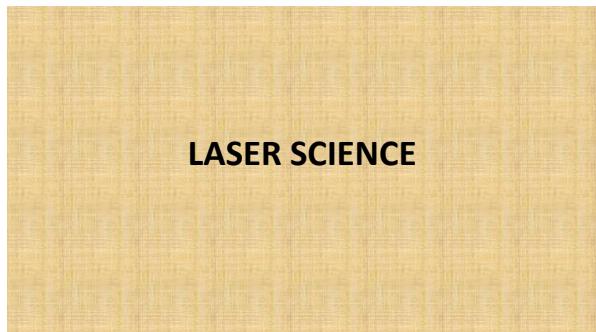


OBJECTIVES

At the conclusion of the program the student will be able to:

- Define the acronym LASER
- Describe the major components of medical lasers
- List the unique properties of a laser
- Discuss the required safety protocols for operating a medical laser
- Explain the benefits of lasers in medicine and give examples of the various types of lasers and how they are used

The slide has a textured, light brown background. The title is in bold, black, uppercase letters. The objectives list is in a smaller, black font.



LASER SCIENCE

The slide has a textured, light brown background. The title is in bold, black, uppercase letters.

BASICS OF LASERS AND LASER LIGHT

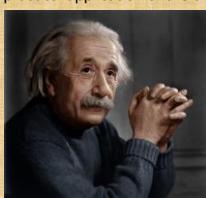
Light

Amplification by the

Stimulated

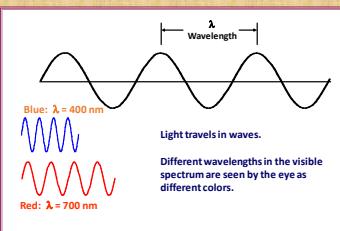
Emission of

Radiation

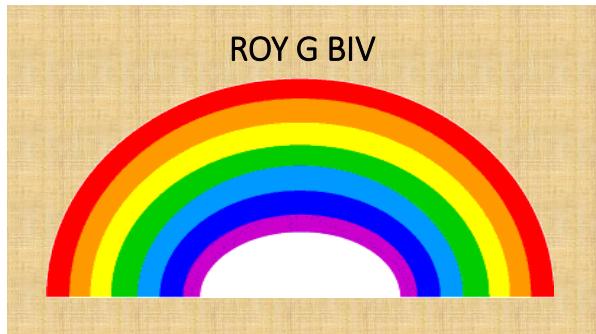


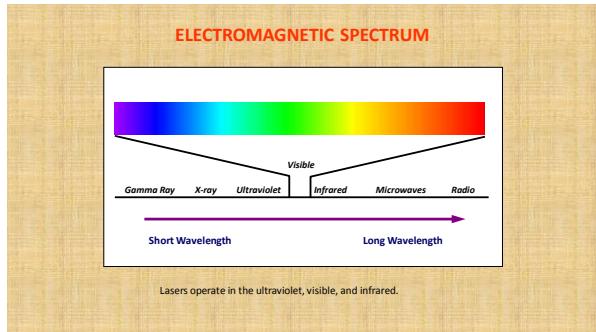
Laser Science

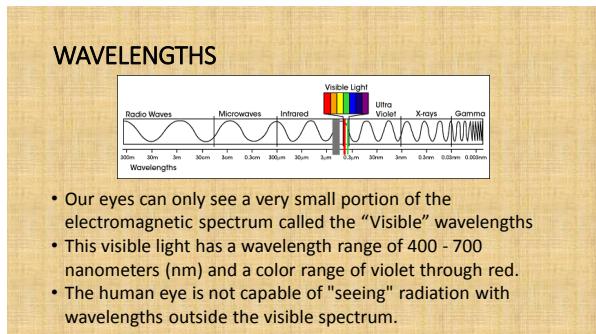
- The theory of stimulation of radiation was developed by Albert Einstein in 1917, but no practical application of the theory was put to test until the 1950's



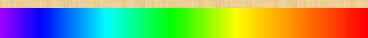
WAVE NATURE OF LIGHT – Light is an electromagnetic wave







- Our eyes can only see a very small portion of the electromagnetic spectrum called the "Visible" wavelengths
- This visible light has a wavelength range of 400 - 700 nanometers (nm) and a color range of violet through red.
- The human eye is not capable of "seeing" radiation with wavelengths outside the visible spectrum.



WAVELENGTHS

The visible colors from shortest to longest wavelength are: violet, blue, green, yellow, orange, and red.



Diagram showing six waves labeled from top to bottom: RED, ORANGE, YELLOW, GREEN, BLUE, and INDIGO. Below these is a shorter wave labeled VIOLET.

WAVELENGTHS

The brightest color is green, followed by red, then blue, then violet.

WAVELENGTHS

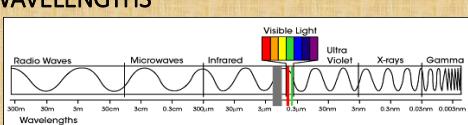
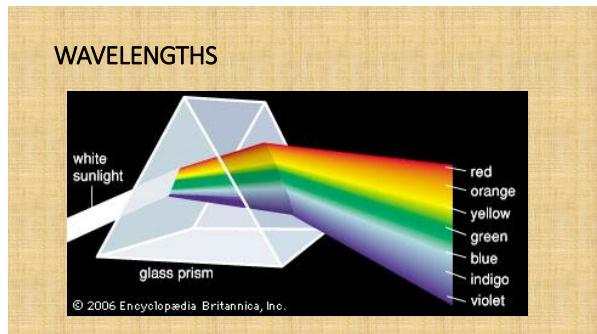
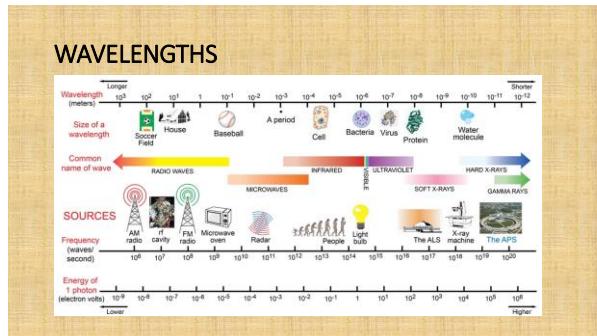


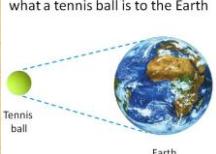
Diagram showing the visible light spectrum with wavelength markings in meters (m) and micrometers (μm). The visible light region is labeled 'Visible Light' and includes the colors Red, Orange, Yellow, Green, Blue, and Indigo. The diagram also shows Radio Waves, Microwaves, Infrared, Ultra Violet, X-rays, and Gamma rays.

- Ultraviolet radiation has a shorter wavelength than the visible violet light.
- Infrared radiation has a longer wavelength than visible red light.

WAVELENGTHS

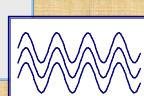
Black is a total absence of light



WAVELENGTHS

NANOMETER
One nanometer is to a tennis ball what a tennis ball is to the Earth

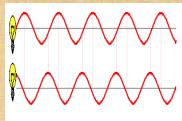
NANOMETER
A strand of hair is 100,000 thicker than a nanometer
1 mm = 1,000,000 nanometers



CHARACTERISTICS OF LASER LIGHT

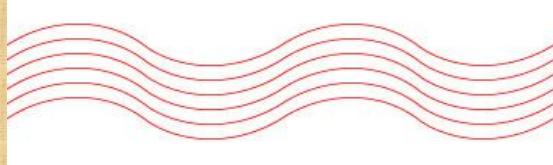
**COLLIMATED
COHERENT
MONOCHROMATIC**

The combination of these three properties makes laser light focus 100 times more focused than ordinary light

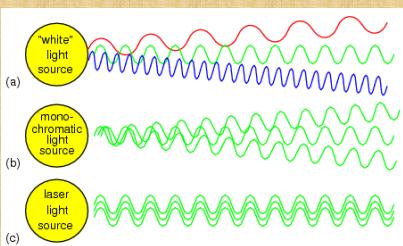


Coherent – Directional Move Together to Different Points

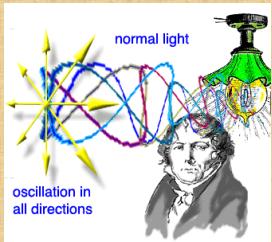
These two waves are coherent - they have a phase difference which is constant over time.



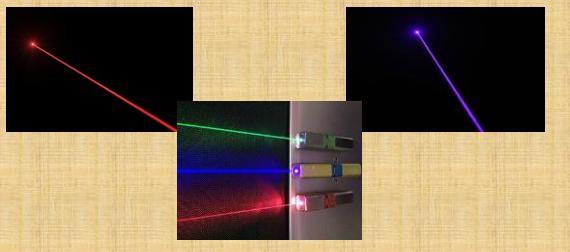
Collimated – Waves Move Parallel to Each Other



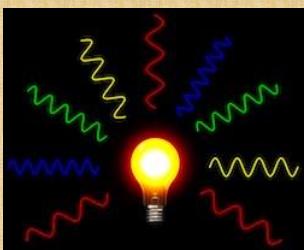
Collimated – Waves Move Parallel to Each Other



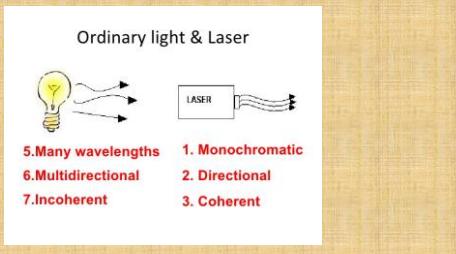
Regular Light



Monochromatic



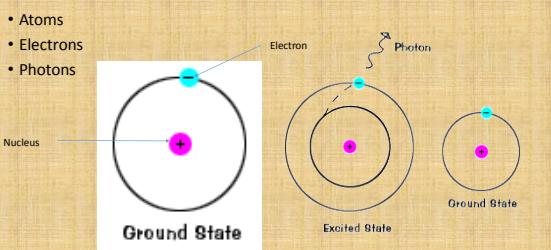
Regular Light – All Different Colors



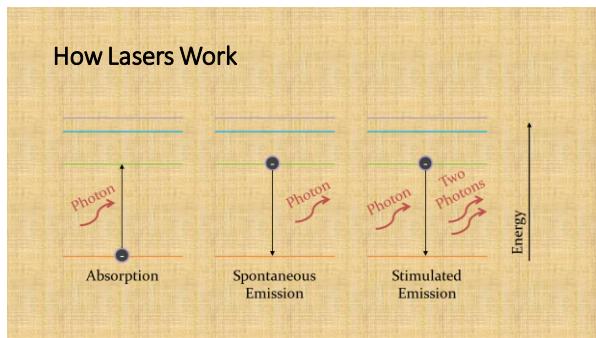
To Summarize

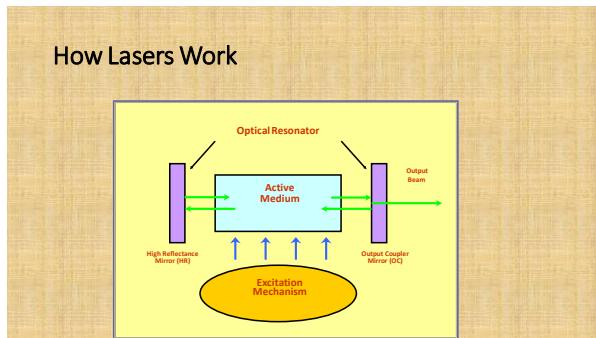
LASERS

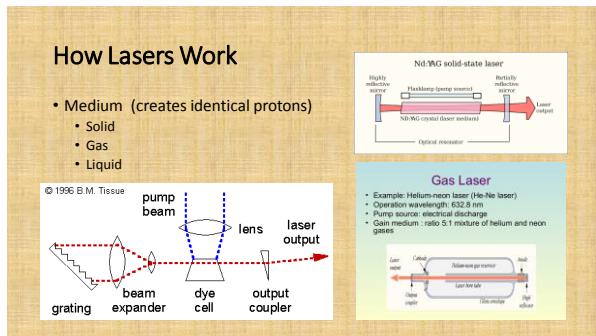
- **L**ight
- **A**mplification by the
- **S**timulated
- **E**mission of
- **R**adiation

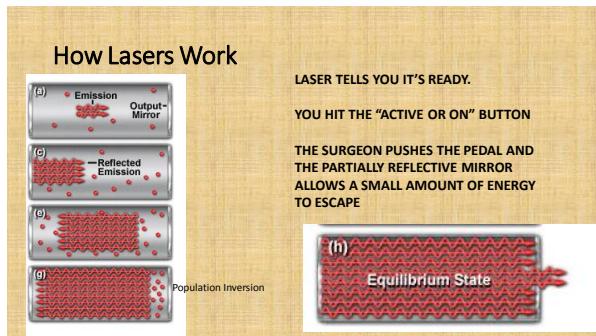
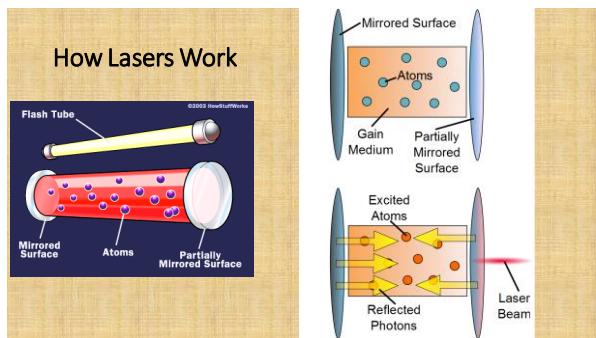
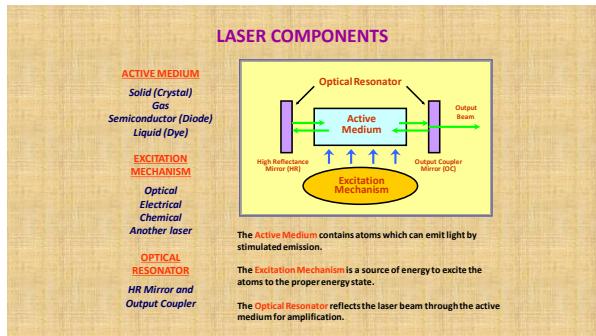


How Lasers Work



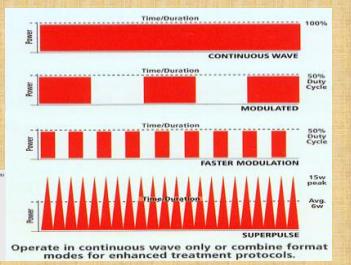




How Lasers Work

- More atoms must be in the excited state than in the resting site – population inversion
- Different lasers take different times to warm up.
 - Solid medium lasers can take 10-20 minutes
 - Gas medium lasers can warm up instantly



How Lasers Work

- Continuous
- Pulsed Single
- Pulsed Repetitive
- Super Pulsed
- Q-Switch (Extremely High Energy Pulses)

How Lasers Work

- Continuous
 - Average Power in watts
- Pulsed Lasers
 - Single Pulse
 - Repetitive Pulse
 - Time On** (pulse duration), **Time Off** (interpulse period)
 - Hertz (Hz) represents the number of pulses per second



LASER SAFETY

- Laser Safety Officer, Laser Safety Committee
- Laser Education for any staff member in the room
- Laser equipment pre-op check
- Verify settings with surgeon.
- Surgeon must communicate "laser on" or "laser off"
- Surgeon is the only one to operate the foot pedal
- Documentation

Laser Safety

- An extra nurse is needed and is dedicated to control of the laser and laser safety considerations.
- Test fire the CO2 Laser
 - Test fire the laser through the operative system with the beam maximally focused, onto a wooden tongue blade at 5 to 10 watts to check that the He-Ne beam is well aligned with the CO2 beam.
- Post appropriate signs outside procedure room . Take down when laser procedure is completed
- Make sure everyone in the room has appropriate laser safety glasses

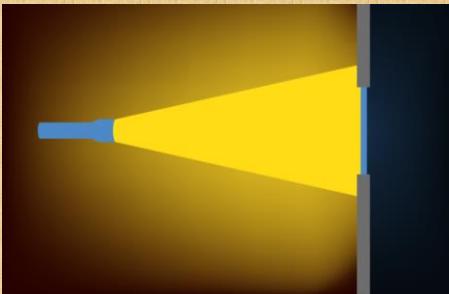
Laser Safety

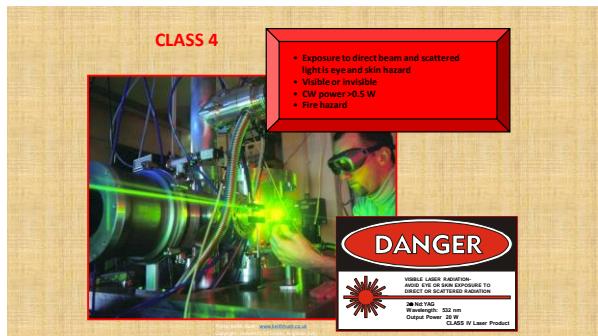
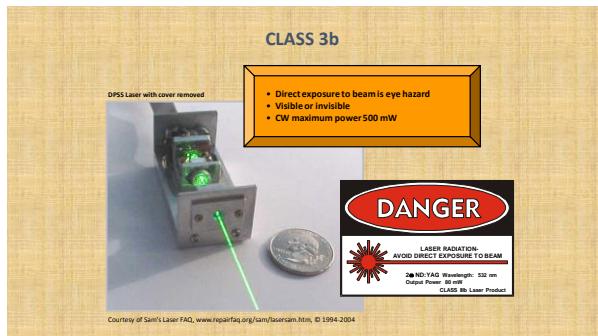
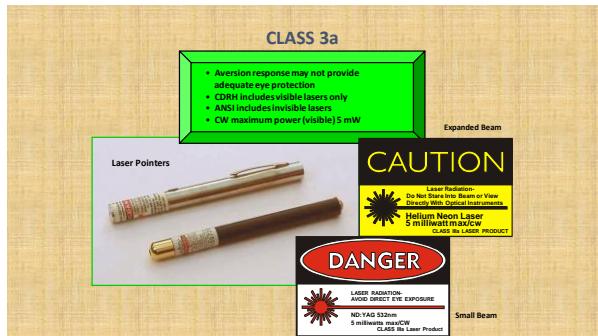
- Smoke Evacuators
- Laser Masks

DANGER OF LASER WAVELENGTHS

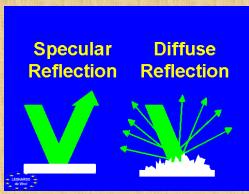
Two characteristics of laser light contribute to the hazard:

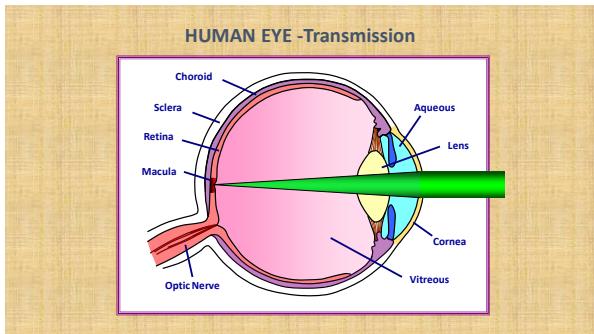
- Laser light can be emitted in a tight beam that does not grow in size at a distance from the laser.
- The eye can focus a laser beam to a very small, intense spot on its retina, which can result in a burn or blind spot.



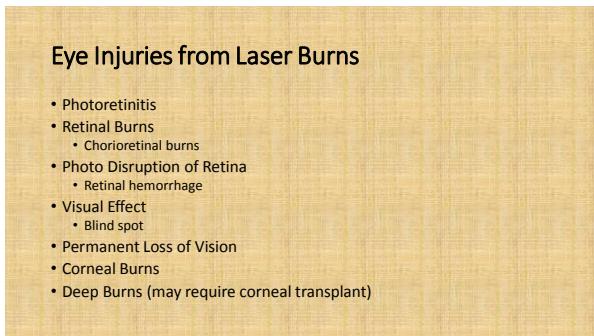
IEC 60825 Laser Classification

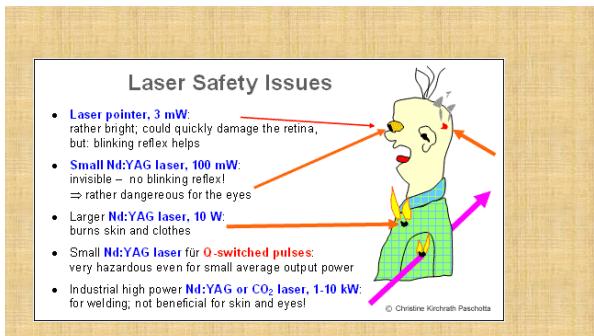

Class 1	Incapable of causing injury during normal operation (Almost the same as ANSI class 1)
Class 1M	Incapable of injury unless collecting optics are used (Currently included in class 1 under ANSI)
Class 2	Visible lasers incapable of causing injury in 0.25 s. (Same as ANSI class 2)
Class 2M	Visible lasers incapable of causing injury in 0.25 s unless collecting optics are used (ANSI visible 3a with expanded or diverging beam)
Class 3R	Mutually unsafe for intrabeam viewing; up to 5 times the class 2 limit for invisible lasers or 5 times the class 1 limit for invisible lasers (ANSI visible 3a with small beam & ANSI invisible 3a)
Class 3B	Eye hazard for intrabeam viewing (Same as ANSI class 3b)
Class 4	Eye and skin hazard for both direct and scattered exposure (Same as ANSI class 4)

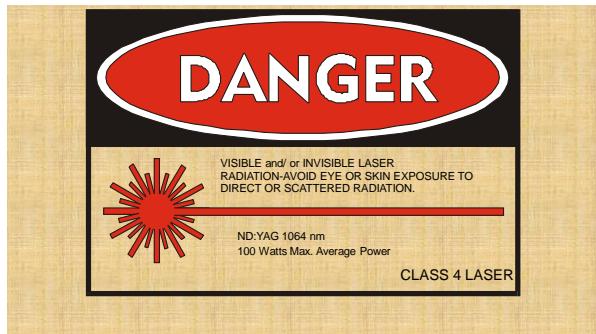

Laser Tissue Effects

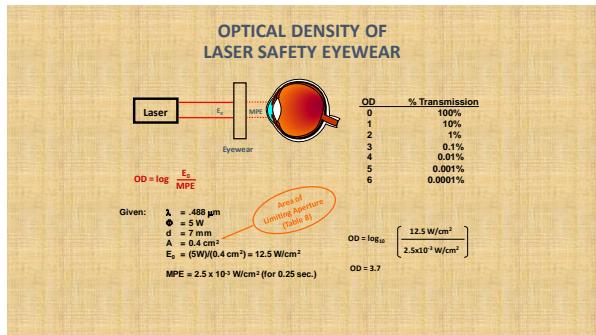
- Absorption-Goal
- Scattering
- Transmission
- Reflection

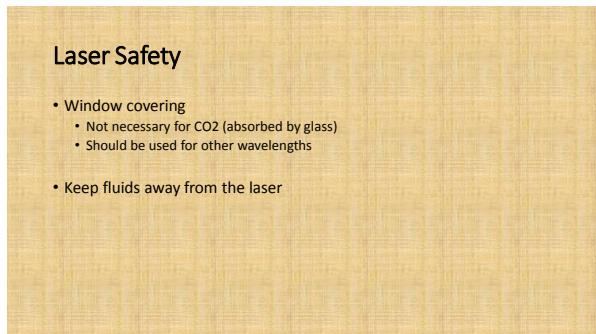
- Avoid shiny surgical instruments
- Should be coated, ebonized, or matted











Patient safety

- Patient Eye Care Protection
 - Gauze, wet cotton ball and quarters
 - Metal eye shield, extra ocular and Intraocular corneal shields
 - Disposable patient shields
 - Laser Glasses

Patient Safety

- Skin Injuries
 - UV exposure – like a sunburn
 - Thermal Injuries
 - Burns

Patient Safety

- Sponges or drapes used around a laser should be moistened
- Uses polypropylene drapes
- Use non-flammable prep solutions
- Protect teeth
- Have patient avoid mousse or hair spray
- Cover hair with wet sponge or coat with water soluble jelly

Patient Safety

- Lasers with ET Tubes
 - Endoscopic laryngeal surgery without ET tube or supplemental O₂
 - Use lowest tolerable level before activating laser near head, face or neck

Surgical Fire Prevention in Laser Laryngeal Surgery- Department of Otorhinolaryngology Newsletter

Airway Fire Protocol

- Remove source of fire
- Stop ventilating, disconnect circuit, extubate
- Extinguish fire in bucket of water
- Mask ventilate with 100% O₂, continue anesthesia IV
- Direct laryngoscopy and rigid bronchoscopy for damage and debris
- Reintubate if possible
- Trach if necessary
- CXR
- Steroids

Required Safety Practices

- Laser should be in Ready mode **ONLY WHEN THE SURGEON IS USING IT.**
- Otherwise, it should be in standby mode.

Required Safety Practices

- Emergency Stop Button
- Laser Signs on machine
- Key –Should never remain in the laser when not in use. Only accessible to trained laser employees.

External Safety Issues

Protective Housing
prevents access to laser radiation above safe level.

Safety Interlocks
terminate laser beam if protective housing is opened.

Only authorized personnel may operate laser with interlocks defeated.

Warning Labels
alert personnel if opening the housing might expose a laser hazard.

Viewing Windows and Optics
limit laser and collateral radiation to safe levels.

NON-BEAM HAZARDS

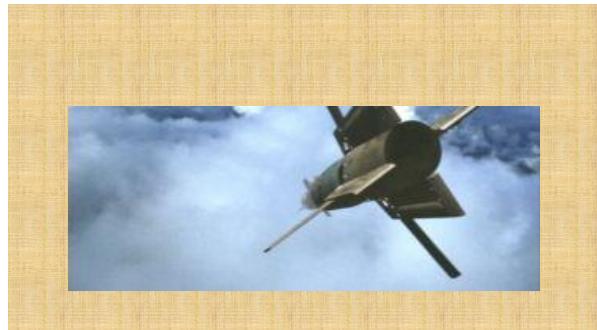
- Electrical Hazards- Check all cords including foot pedals
- Avoid multiple cords and foot pedals
- Smoke & Fumes - evaluate the need for a smoke evacuator
- Laser Fires
- Mechanical Hazards
- Flashlamp Light
- Chemical Hazards

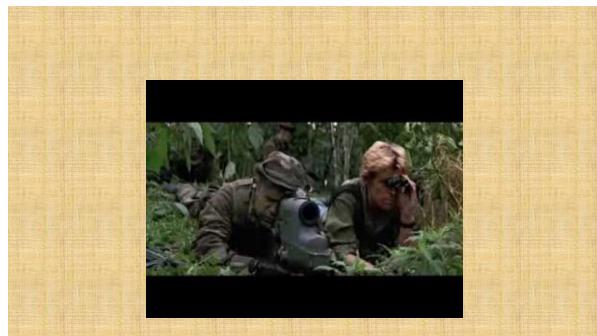
CAUSES OF LASER ACCIDENTS

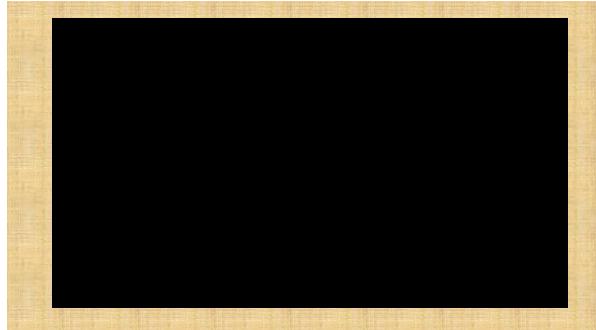
Common causes of laser injuries:

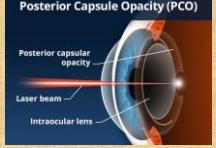
- Inadequate training of laser personnel
- Alignment performed without adequate procedures
- Failure to block beams or stray reflections
- Failure to wear eye protection in hazardous situations
- Failure to follow approved standard operating procedures or safe work practices
- Turning off audio cue when laser is activated

HOW LASERS ARE USED







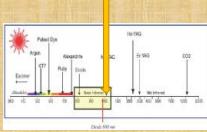


Nd YAG Laser For Eyes

- Single pulse
- Neodymium Yttrium Aluminum Garnet
- Aiming Beam 564nm Visible (400-600nm)
- Laser – 1064 nm Invisible

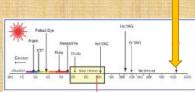
• YAG Laser Capsulotomy
Posterior Capsule Opacity (PCO)

- Peripheral Iridotomy for acute angle-closure glaucoma

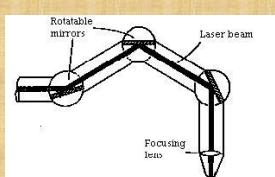


Blade-less Cataract Surgery

Technology is identical to the LASER used in Lasik


- Near infrared femtosecond laser with a wavelength of approximately 1053 nm
- It thus also belongs to the category of ultrafast lasers or ultrashort pulse lasers.
- The laser creates the micro-incisions in the cornea, the circular incision into the lens capsule (capsulotomy) and carries out segmentation of the lens, creating perfect, precise incisions
- The surgeon is able to 'design' the surgery using a sophisticated computer, tailoring the operation to the exact patient needs, with an image-guided laser

CO2 Laser


- Invisible wavelength
- Can be pulsed or continuous
- 10,600 wavelength
- Remains focused for long distances
- Uses an aiming beam
- Absorbed by water
- Seals the vessels
- Can now be used through a fiber

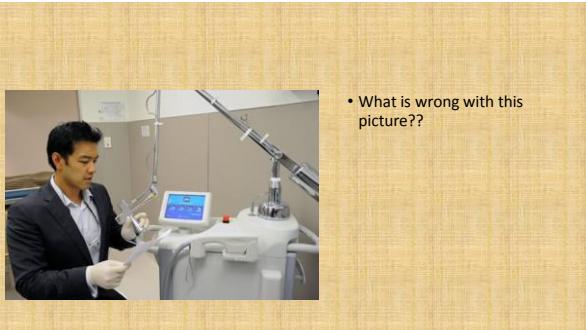
- ENT with Microscope
- Neurosurgery
- Spine Surgery
- Dermatology
- Plastic Surgery –Laser Resurfacing
- Heart Procedures
- Tissue Rejuvenation

CO2 Laser

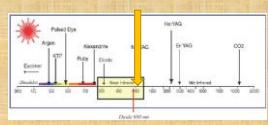
- Articulated Arm

CO2 Laser

- Invisible wavelength – need a visible aiming beam to see where the laser energy is focused
- Need to test laser prior to the procedure to make sure the aiming beam and the invisible CO2 beam are in alignment and spot size is accurate

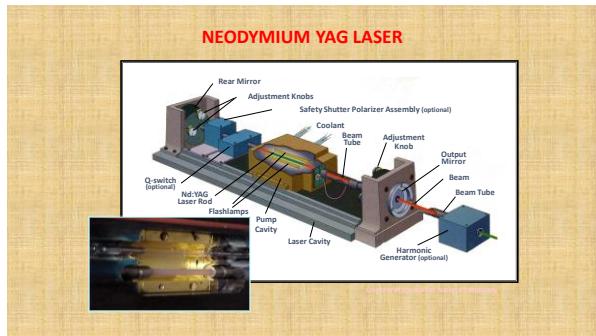


- What is wrong with this picture??

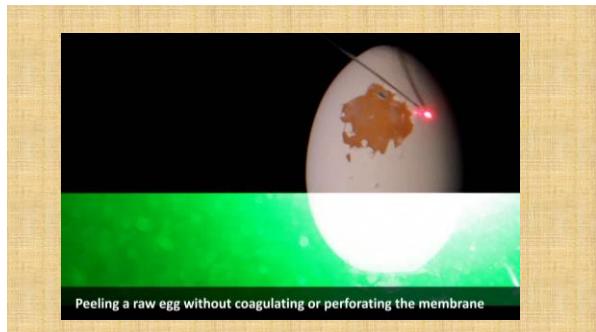


ND YAG

- Neodymium Doped Yttrium Aluminum Garnet – Solid Medium
- 1064 nm
- Invisible wavelength – Need aiming beam
- Almost always delivered by fiber
- Laser Assisted Hair Removal
- Removal of spider veins
- Tumor de-bulking and ablation
- Laser Prostate Surgery



Q Switched Nd:YAG

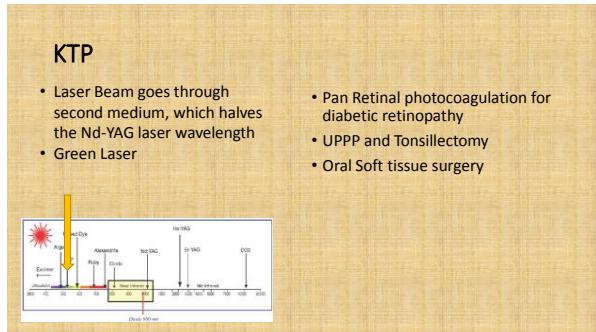

- High Peak Power
- Nanosecond pulses
- Shatters Pigment into particles, either bounce out of skin or get absorbed

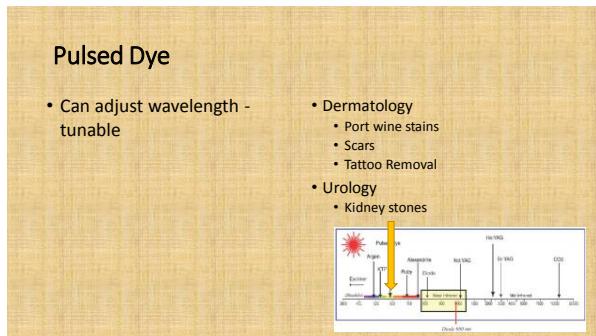
- Pigmented Lesions
- Tattoo removal (best for black/blue pigments)
- Wrinkles and Acne scars
- Hair reduction

Holmium YAG

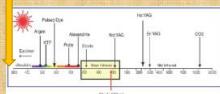
- Rare Earth Element, Doped in a YAG crystal
- 2150 nm
- Delivered in pulses
- Superheats water, creating a vaporizing bubble at the tip of the fiber
- Bubble expands rapidly and destabilizes the molecules it contacts
- Very shallow absorption rate when used in liquid environment

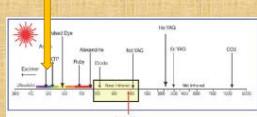
- Urology- Lithotripsy for urinary and bladder stones
- Arthroscopy





Pulsed Dye


Multiple wavelengths can treat a wide range of tattoo ink colors


Excimer

- Multiple Wavelengths 157-351 nm
- Gas Laser Medium. Eximer is shortened form of Excited Dimer
- Disrupts molecular bonds of the surface tissue through ablation rather than burning
- Can remove exceptionally fine layers of surface material without affecting other tissue

- LASIK
- Photocoagulation to treat wet form age related macular degeneration (AMD)
- Dermatology
- Angioplasty

Argon

- Argon-Plasma Coagulation – cauterizes blood vessels of the airway and lung
- Can kill the cancer cells without touching the tumor- important for bleeding tumors

Helium Neon

- Also called HeNe beam
- Best known is red – 633 nm
- Used as an aiming beam with non-visible wavelengths
- Can cause eye damage if viewed with the naked eye for a period of time

The diagram illustrates the internal structure of a Helium-Neon (He-Ne) laser. It shows a 'Laser tube' containing a 'Helium-neon gas reservoir' with a 'Cathode' at one end and an 'Anode' at the other. An 'Output coupler' is positioned near the cathode. A 'Glass envelope' surrounds the tube, and a 'High reflector' is located at the anode end. Below this, a wavelength chart shows the emission spectrum of various lasers. The chart lists wavelengths in nanometers (nm) on the x-axis, ranging from 400 to 1000. The lasers shown include:

- Excimer (400-410 nm)
- Argon (450-500 nm)
- UV (510 nm)
- Visible (520 nm)
- Aluminum (540 nm)
- Green (550 nm)
- Yellow (560 nm)
- Orange (580 nm)
- Red (633 nm)
- IR (650 nm)
- CO₂ (10.6 μm)

 The 'He-Ne' laser is specifically highlighted with a yellow box and labeled 'He-Ne' at 633 nm.

Other Applications

- Photodynamic Therapy
 - Injection of Photosensitizing agent to make cells more sensitive to light
 - Subjected to Laser light, which vaporizes the tumor cells
 - Patient may be sensitive to bright light for several weeks post-op
- Dentistry
- Veterinarian Medicine
- Cold Laser Therapy
- Fat Removal – Laser Liposuction (650 nm Diode laser)

Publications by Karen Andersen

- How to Stay Laser Safety Compliant**
 - Outpatient Surgery Magazine* - November 2000, I, No. 11
 - <http://www.outpatientsurgery.net/surgical-facility-administration/personal-safety/how-to-stay-laser-safety-compliant-11-00>
- Laser Technology – A Surgical Tool of the Past, Present and Future
 - AORN* November 2003- Volume 78, Issue 5, Pages 794-802, 805-807
- Safe Use of Lasers in the Operating Room- What Perioperative Nurses Should Know
 - AORN* January 2004, Volume 79, Issue 1, Pages 171-172, 174, 176-183, 185-188

Resources

- 1-American National Standards Institute, Laser Institute of America. American National Standard for Safe Use of Lasers in Health Care Facilities. The Laser Institute of America, Orlando, Fla; 1996.
- 2PL 91-596, "Occupational Safety and Health Act of 1970," Section 5. . ((accessed 23 Nov 2009).).
- 30293-20-01 "Surgery protection," in: *Code of Federal Regulations (CFR) 29: Labor, Part 1910, Section 134*. US Government Printing Office, Washington, DC; 2003.
- 4"Federal register: Respiratory protection-59-58884-58956," US Department of Labor Occupational Safety and Health Administration, . ((accessed 23 Nov 2009).).
- 5"Control of Smoke from Laser/Electric Surgical Procedures; publication 96-128. US Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Washington, DC 1996.
- 6"Recommended practice for laser safety in practice settings," in: Standards, Recommended Practices, and Guidelines. AORN, Inc; Denver; 2002.
- 7Keterelbaum, A. "New revision of ANSI Z136.1 laser safety standard"; *USA Today*, May 2000:9. ((accessed 21 Nov 2003).).
- 8McNally, PI. "Laser technology: A nursing perspective"; *Dermatology Nursing*, August 1991;3:241-252.
- 9Laser Safety Information Bulletin, Laser Institute of America. ((accessed 13 Nov 2003).).
- 10"Health Sciences Laser Safety Program: Advanced Laser Safety Course" Virtual Hospital. . ((accessed 13 Nov 2003).).
- 11"OSH answers. Physical agents: Lasers in health care"; Canadian Centre for Occupational Health and Safety. . ((accessed 25 Nov 2003).).
- 12Stanford University Laser Safety Manual, Stanford University. . ((accessed 25 Nov 2003).).
- 13Ball, KA. *Lasers: The Perioperative Challenge*, second ed. Mosby St Louis; 1995.
- 14Podnos, YD, Williams, RA. "Fires in the operating room," *Bulletin of the American College of Surgeons*. August 1997;82:14-17.
- 15Betancourt, J. "A laser safety program for a university"; *Vermont Safety Information Resources, Inc.* . ((accessed 25 Nov 2003).).
- 16Sosis, M. *Anesthesia for Laser Surgery*. J B Lippincott Co; Philadelphia; 1993.
- 17Wolf, GL. "Danger from OR fires still a serious problem"; *Anesthesia Patient Safety Foundation Newsletter*. Winter 1999;14 ((accessed 13 Nov 2003).).

Resources

- 18"3.1.2.1 Airway fire during laser surgery in the upper airway" The Medical Algorithms Project. . ((accessed 13 Nov 2003).).
- 19Sagar, PM et al. "Chemical composition and potential hazards of electrocautery smoke"; *British Journal of Surgery* December 1996;83:1792.
- 20Bain, AA. "Surgical smoke: is it safe to breathe?"; *Today's Surgical Nurse*. September/October 1996;16-21.
- 21"Surgical smoke: What we know today" Mastel Precision. . ((accessed 25 Nov 2003).).
- 22Frerenczy, A, Bergner, C, Richart, RM. "Human papillomavirus DNA in CO2 laser generated plume of smoke and its consequences to the surgeon"; *Obstetrics and Gynecology* 1996;87:111-115.
- 23Weiss, SA. "Lasers aid in bacteria destruction"; *Photronics.com*. . ((accessed 25 Nov 2003).).
- 24Bragg, M et al. "Presence of human immunodeficiency virus DNA in laser smoke"; *Lasers in Surgery and Medicine*. November 1991;11:197-203.
- 25Gracie, KW. "Hazards of vaporous tissue plume"; *The Surgical Technologist*. January 2001;31:20-25.
- 26"Control of smoke from lasers or electrical procedures"; *Today's Surgical Nurse*. March/April 1997;19-49.
- 27"CO2 laser smoke: surgical smoke from lasers and surgical lasers"; *Today's Surgical Nurse*. December 21 Nov 2003;1.
- 28The American Institute of Architects: *Academy of Architecture for Health: The Design Guidelines*. Institute with assistance from the US Department of Health and Human Services. In: *Guidelines for Design and Construction of Hospital and Health Care Facilities*. American Institute of Architects, Washington, DC; 2001:79.
- 29"Lasers safety: Non-beam hazards"; *Virginia Polytechnic and State University Environmental, Health, and Safety Services*. . ((accessed 25 Nov 2003).).
- Roy S, Smith LP. Surgical fires in Laser Laryngoplasty. Are We Safe Enough? *Otolaryngology-Head and Neck Surgery*. 2011; Mar-Apr;12(2):109-14.
- 2. Smith LP, Roy S. Operating room fires in otolaryngology: Risk factors and prevention. *American Journal of Otolaryngology*. 2011; Mar-Apr;12(2):109-14.

Please do not hesitate to contact me with questions.

Karen Andersen (321)258-6079
Floridahealthcarerisk@gmail.com