

Endoscope Reprocessing:

Facing the new challenges

Endoscope Reprocessing: Facing the new challenges

Image courtesy of Healthmark

Disclosures:

Director of Infection
Prevention &
Endoscopy
Excellentia Advisory
Group

Endoscope Reprocessing: Facing the new challenges

Objectives:

The learner will be able to:

- List the steps in endoscope reprocessing
- Identify resources for guidance on endoscope reprocessing

Endoscope Reprocessing: Facing the new challenges

Endoscope Reprocessing: Facing the new challenges

INQUIRING MINDS:

Which guidelines does your facility follow?

- A) AAMI
- B) AORN
- C) SGNA
- D) Do not know

Endoscope Reprocessing: Facing the new challenges

Endoscope Reprocessing: Facing the new challenges

Personnel factors that influence the quality of reprocessing include:

- Lack of knowledge or unfamiliarity with scope channels, accessories, and specific steps
- Inadequate number of staff to support volume, workflow, and throughput;
- Frequent disruptions or interruptions during reprocessing
- Inadequate training;
- Limited accountability;
- Time pressures/ demands for rapid endoscope turn-around.

Endoscope Reprocessing: Facing the new challenges

Reprocessing personnel should accomplish the following:

- Understand rationale/ importance of reprocessing
- Able to read, understand, and implement the manufacturer's instructions on proper cleaning and HLD of endoscopes and accessories
- Demonstrate competency for all steps of endoscope reprocessing, including proper use of AER systems and other equipment at least annually
- Undergo more frequent validation of competency for specialty endoscopes that are used infrequently;
- Complete reprocessing training with documented competency for new models of endoscopes, accessories, valves, and AER's as soon as they are introduced

Endoscope Reprocessing: Facing the new challenges

Reprocessing personnel should accomplish the following:

- Complete all reprocessing meticulously and efficiently, maintaining strict adherence to reprocessing steps
- Immediately report any breaches in reprocessing according to facility policies and protocols.
- Understand the safety hazards of endoscope reprocessing and take appropriate action to protect oneself and others.

NOTE: Temporary personnel should **not** be allowed to clean or disinfect instruments in either a manual or AER until competency has been established

Endoscope Reprocessing: Facing the new challenges

INQUIRING MINDS:

How many have a certified endoscope reprocessing tech?

Endoscope Reprocessing: Facing the new challenges

Management

Contribute to effectiveness and safety of reprocessing.

Responsibilities include:

- Allow adequate time for reprocessing
- Ensure adequate staff to support meticulous & timely reprocessing;
- Have facility protocols to readily identify endoscopes that have been properly reprocessed and are ready for use

Endoscope Reprocessing: Facing the new challenges

- Reprocessing protocol reviewed/ updated per policy;
- Consult with individuals responsible for IP&C when considering modifications protocol and when purchasing new equipment
- Conduct annual review of policies/ competencies to ensure compliance with current standards/ manufacturers' IFU's
- Maintain documentation of reprocessing activities (e.g. AER maintenance records; test results verifying HLD concentration, reuse life)
 - Essential for recognizing reprocessing error, identifying all scopes affected by error, naming individual patients who could be at risk

Endoscope Reprocessing: Facing the new challenges

- Following manufacturers' IFU's for maintenance/ repair of endoscopes and equipment used for reprocessing
- Ensure all staff involved in reprocessing are identified, well trained, and demonstrate initial & continued competency.
- Ensure decisions made consider the number and category of personnel that will be responsible for reprocessing;
- Have P&P detailing the facility's response to a reprocessing error
- Observe staff for adherence to P&P, possibly using an environmental tour checklist for endoscope reprocessing areas

Endoscope Reprocessing: Facing the new challenges

Reprocessing features that impede effectiveness

- Numerous steps that must be followed meticulously;
- Steps prone to human error (e.g., pre-clearing, manual cleaning)
- Lag time/ delay in reprocessing;
- Inadequate enzymatic concentration, temperature, or time;
- Inappropriate use of HLD (e.g. wrong concentration/ temperature, expired reuse life, inadequate exposure time)
- Inadequate concentration due to scope not dried adequately/ excess water diluted HLD;
- Inadequate cleaning prior to HLD;
- Inadequate drying before storage
- Lack of quality control measures to detect problems/ lapses in reprocessing.

Endoscope Reprocessing: Facing the new challenges

Quality Control Measures

- Documentation
- Audits re: reprocessing activities
- Equipment performance/ maintenance
- HLD testing
- Manual cleaning validation documentation

Poll Question

INQUIRING MINDS:

Are you aware that the updated SGNA reprocessing standard includes a "safety stop"?

- Yes
- No

Endoscope Reprocessing: Facing the new challenges

SGNA Endoscope Reprocessing Steps

- 1. Pre-cleaning;
- 2. Leak testing;
- 3. Manual cleaning;
- 4. Rinse after cleaning;
- 5. Visual inspection;
- 6. High-level disinfection (manual or automated);
- 7. Rinse after high level disinfection;
- 8. Drying (alcohol and forced air); and
- 9. Storage.

AAMI ST91

- A) Pre-clearing at point of use;
- B) Transporting;
- C) Leak testing;
- D) Cleaning;
- E) Rinsing;
- F) Inspecting or testing for cleanliness;
- G) Disinfection/High-level disinfection and monitoring of the process;
- H) Rinsing;
- I) Drying and alcohol flush;
- J) Storage

Endoscope Reprocessing: Facing the new challenges

SGNA Endoscope Reprocessing Steps

- 1. Pre-cleaning;
- 2. Leak testing;
- 3. Manual cleaning;
- 4. Rinse after cleaning;
- 5. Visual inspection;
- 6. High-level disinfection (manual or automated);
- 7. Rinse after high level disinfection;
- 8. Drying (alcohol and forced air); and
- 9. Storage.

AAMI ST91

- A) Pre-cleaning at point of use;
- **B) Transporting;**
- C) Leak testing;
- D) Cleaning;
- E) Rinsing;
- F) Inspecting or testing for cleanliness;
- G) Disinfection/High-level disinfection and monitoring of the process;
- H) Rinsing;
- I) Drying and alcohol flush;
- J) Storage

Endoscope Reprocessing: Facing the new challenges

SGNA Endoscope Reprocessing Steps

- 1. Pre-cleaning;
- 2. Leak testing;
- 3. Manual cleaning;
- 4. Rinse after cleaning;
- 5. Visual inspection;
- 6. High-level disinfection (manual or automated);
- 7. Rinse after high level disinfection;
- 8. Drying (alcohol and forced air); and
- 9. Storage.

Endoscope Reprocessing: Facing the new challenges

Pre-cleaning at point of use

To prevent buildup of bio-burden, development of bio-films, and drying of secretions

- Removes organic material (e.g., blood, body fluids, body soil)
- Decreases the bio-burden before bio-burden has an opportunity to dry and before complete decontamination
- At point of use; immediately after removal of the insertion tube from the patient and prior to disconnecting the endoscope from the power source.

Endoscope Reprocessing: Facing the new challenges

Pre-cleaning at point of use

- Gather PPE
- Gather supplies:
 - ? enzymatic detergent vs. water
 - Lint free cloth
 - Adapters
 - Protective cap
 - Transport container

Endoscope Reprocessing: Facing the new challenges

Leak Test

Detects damage to the interior or exterior of the endoscope

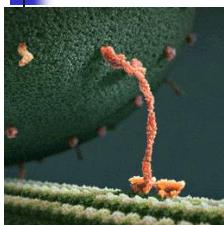
- Before immersion in solutions
 - Minimize damage to parts not designed for fluid exposure.
- Dry
- Wet
- AER

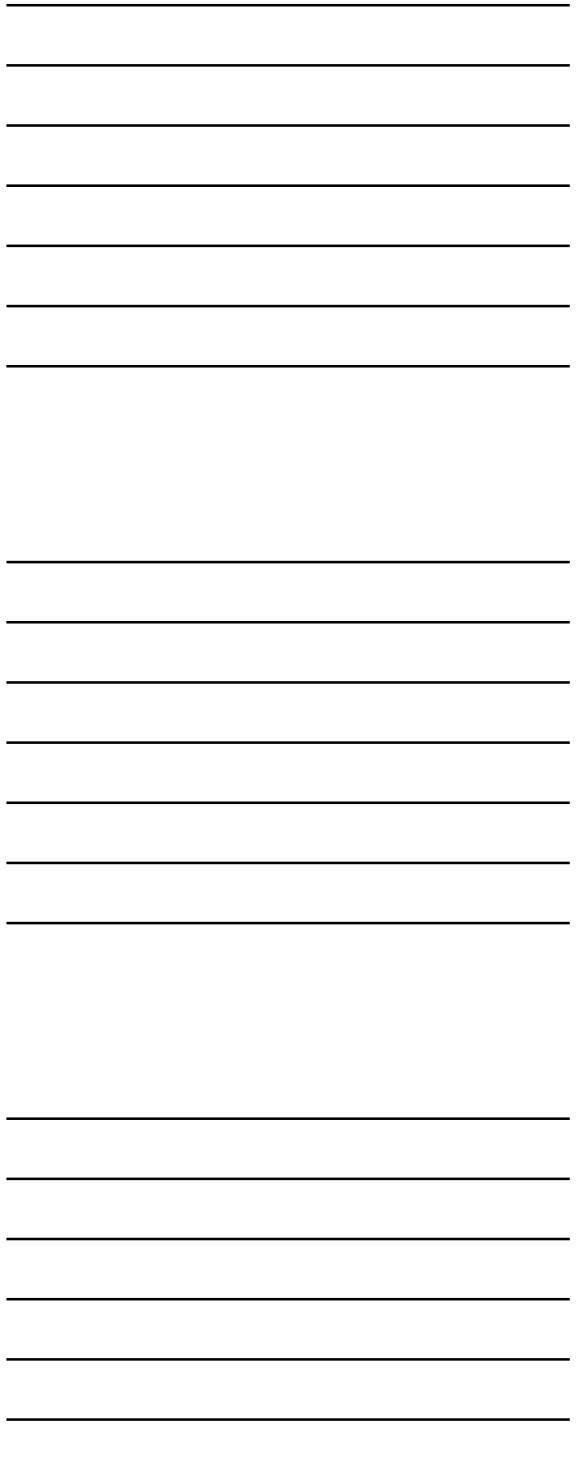
Endoscope Reprocessing: Facing the new challenges

Leak Test

- Remove valves; discard disposables
- Pressurize before immersing in water
 - No detergent
 - Manipulate knobs to flex tip in all directions
 - Observe for bubbles
- Remove from water before depressurizing

Endoscope Reprocessing: Facing the new challenges


Image courtesy of Healthmark


Manual cleaning

This is the most important step in removing the microbial burden from an endoscope

- Assemble supplies
- Mix fresh enzymatic detergent
- Wipe exterior of endoscope
- Brush all channels: air, water, suction
- Purge enzymatic, rinse with fresh water, purge with air

Just a few microorganisms can multiply to over a million colony-forming units in a few hours

Endoscope Reprocessing: Facing the new challenges

VISUAL INSPECTION

- Verify the endoscope is visibly clean
- Not a guarantee decontamination is complete, but considered a safety stop or "time out" to ensure the endoscope is visually clean before proceeding to the next step of HLD.
 - Inspect for conditions that could affect the disinfection process (e.g., cracks, corrosion, discoloration, retained debris)
 - Use magnification and adequate lighting to help assist in visual inspection (AAMI, 2015).
 - Repeat manual cleaning step(s) if not clean.

Endoscope Reprocessing: Facing the new challenges

Impossible to visualize internal channels

Literature suggests:

- Confirm the adequacy of manual cleaning, a rapid cleaning monitor (or rapid audit tool) for residual organic soil can be used prior to high-level disinfection (Visrodia et al., 2014).
- If the tool results are positive, this allows for the re-cleaning of the endoscope prior to disinfection.
- The frequency of the testing should be determined by the individual institutions (Alfa et al., 2013, 2014; AAMI, 2015; ASGE, 2014).

Spaulding Classification System

Device Classification	Examples	Spaulding process classification	EPA product classification
Critical (Enters sterile tissue or vascular system)	Implants, scalpels, needles, other surg. Instruments	Sterilization: sporicidal chemical; prolonged contact	Sterilant/ disinfectant
Semi critical (Touches mucous membranes)	Flexible endoscopes, laryngoscopes, ET tubes, vaginal specula	High Level Disinfection: sporicidal chemical; short contact	Sterilant/ disinfectant
Non critical (touches intact skin)	Stethoscopes, tabletops, blood pressure cuffs	Low level disinfection	EPA reg. hospital disinfectant

Spaulding Classification System

Device Classification	Examples	Spaulding process classification	EPA product classification
Critical (Enters sterile tissue or vascular system)	Implants, scalpels, needles, other surg. Instruments	Sterilization: sporicidal chemical; prolonged contact	Sterilant/ disinfectant
Semi critical (Touches mucous membranes)	Flexible endoscopes, laryngoscopes, ET tubes, vaginal specula	High Level Disinfection: sporicidal chemical; short contact	Sterilant/ disinfectant
Non critical (touches intact skin)	Stethoscopes, tabletops, blood pressure cuffs	Low level disinfection	EPA reg. hospital disinfectant

Endoscope Reprocessing: Facing the new challenges

High Level Disinfection (HLD)

- Destroys all viable microorganisms, but not necessarily all bacterial spores
- The effectiveness depends on:
 - Effective pre-cleaning, manual cleaning, and rinsing to decrease the organic load and microbial content
 - Drying after rinsing to avoid diluting the HLD; and
 - Proper preparation and use (in accordance with the manufacturer's directions).

Endoscope Reprocessing: Facing the new challenges

- Most HLD/sterilants are reused
- Must be tested to assure remain above minimum effective concentration (MEC)
- Test HLD before each load/use

Endoscope Reprocessing: Facing the new challenges

- Never use beyond the date specified on activation
- Change when the solution fails to meet MEC or exceeds the HLD manufacturer's recommended reuse life, whichever comes first
- Use a product-specific test strip
- Establish program for monitoring occupational exposure to regulated chemicals (e.g., formaldehyde, EtO), which adheres to state and federal regulations

Endoscope Reprocessing: Facing the new challenges

MANUAL HIGH LEVEL DISINFECTION

- Purge with air and externally dried prior to immersion to minimize diluting the HDL.
- Completely immerse
 - Basin: accommodate endoscope without undue coiling (AAMI, 2015); tight-fitting lid to contain the chemical vapors (AAMI, 2010; Peterson et al., 2011).
 - Flush disinfectant thru all channels until seen exiting. no air pockets remain

Endoscope Reprocessing: Facing the new challenges

Note:

- 1) Complete microbial destruction cannot occur unless all surfaces are in complete contact with the chemical
- 2) Since internal contact cannot be visually confirmed because of scope design, purging until a steady flow of solution observed is necessary

Endoscope Reprocessing: Facing the new challenges

- Soak in the HLD/sterilant for the time/temperature required to achieve HLD. Use a timer to verify soaking time.
- Do not exceed the manufacturer's recommended time for soaking (e.g. leaving a scope to soak overnight).
- Purge completely with air before removing from the HLD/sterilant. Purging channels preserves concentration & volume of chemical, and prevents exposure from dripping and spilling.

Endoscope Reprocessing: Facing the new challenges

RINSE AFTER HIGH LEVEL DISINFECTION

- Thoroughly rinse all surfaces and removable parts, and flush all channels and its removable parts with clean water according to disinfectant and endoscope manufacturer's recommendations.

Note:

- Rinsing prevents exposure/ potential injury of skin/mucous membranes from chemical residue.
- Fresh, clean water used for each rinse

Endoscope Reprocessing: Facing the new challenges

Automated Endoscope reprocessor (AER):

- Manual cleaning of the endoscope must occur
- Verify AER has been validated to reprocess specific endoscope/ accessories
- Prepare AER according to the manufacturer's guidelines.
- Place the endoscope in AER, attach all channel adapters according to the manufacturer's IFU.
 - The elevator channel of a duodenoscope has a very small lumen.
 - most AER cannot generate pressure required to force fluid through the lumen, a 2 ml-5 ml syringe must be used to manually reprocess (all steps) the elevator channel unless the AER is validated to perfuse this channel.

Endoscope Reprocessing: Facing the new challenges

- Check endoscope manufacturer for model specific information such as the elevator position on duodenoscopes during HLD.
- Place valves and removable parts into the soaking basin of AER.
 - Unless AER has a dedicated space for accessories, reprocess these items separately.
- Check chemical MEC

Endoscope Reprocessing: Facing the new challenges

NOTE:

If cycles/phases are interrupted, HLD cannot be ensured and the full cycle must be repeated.

- If final alcohol rinse cycle is not included in the AER cycle, should be done manually, followed by purging all channels with air until dry
- The duodenoscope elevator and elevator channel must be manually flushed/ dried per the manufacturer's instructions.
- Do not allow the endoscope that has completed reprocessing to sit in the AER for long periods (such as overnight).

Endoscope Reprocessing: Facing the new challenges

DRYING

- Drying is a critical element in reprocessing.
- Moisture allows microorganisms to survive and multiply;
 - All channels/ surface must be thoroughly dried before storage.
 - Outbreaks of *Pseudomonas aeruginosa*, *Acinetobacter spp*, carbapenemase producing *K pneumoniae* have been traced to inadequately dried equipment
 - A few microorganisms may survive HLD.
 - Multiply to over a million colony-forming units in just a few hours if any moisture remains in the endoscope channels or on its surface
- Moisture promotes biofilm development

Endoscope Reprocessing: Facing the new challenges

- Alcohol will displace water and evaporates more easily than water.
- Alcohol mixes with remaining water and encourages evaporation of the residual water as air flows through the channel.
- Store the alcohol in a closed container between uses.
- Alcohol evaporates rapidly when exposed to air, and the remaining solution may be too diluted to effectively promote drying of endoscope channels.

Endoscope Reprocessing: Facing the new challenges

- Flush with 70% to 90% isopropyl alcohol until seen exiting opposite end
- Dry/ purge with pressurized, filtered, air
 - Avoid excessively high air pressure. Can damage internal channels
- Remove channel adapters
- Dry scope exterior
- Rinse/ dry removable parts. Do not re-attach

Endoscope Reprocessing: Facing the new challenges

STORAGE

Two types of storage cabinets exist:

- Conventional cabinets
- Drying cabinets.
 - Drying cabinets are designed to control air quality, humidity, and access
 - Bacteria-free air under pressure to keep surfaces dry.
 - (HEPA) filters provide microbial-free air that is blown through the endoscope channels to ensure remain dry.

Endoscope Reprocessing: Facing the new challenges

Storage

Key considerations

- Area clean, well-ventilated/ dust-free to keep endoscopes dry/free of microbial contamination.
 - An endoscope that is not dry must be reprocessed before use.
- Use cabinets that can be disinfected.
- hang endoscopes in a vertical position (with caps, valves, and detachable components removed) to prevent moisture accumulation/microbial growth.
- Make sure hang freely so not damaged by contact

Endoscope Reprocessing: Facing the new challenges

Storage

- Drying cabinets
 - Follow the cabinet manufacturer's instructions.
 - Drying does not rely on gravity, can be stored horizontally or vertically depending on the design of the cabinet.
- Reusable buttons/ valves reprocessed and stored together with the endoscope as a unique set for tracking purposes
- 7-day storage interval for reprocessed endoscopes-but only if they were reprocessed and stored according to professional guidelines and manufacturer instructions.

References:

- Mitigating the Risk of Cross-Contamination from Valves and Accessories Used for Irrigation through Flexible Gastrointestinal Endoscopes; FDA draft guidance, <http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM430550.pdf>, accessed 1/18/2016
- ANSI/AAMI ST91:2015 Flexible and Semi-rigid endoscope processing in health care facilities Standards of Infection Prevention in Reprocessing Flexible Gastrointestinal Endoscopes 2015, SGNA, http://www.sgna.org/Portals/0/Standards%20for%20reprocessing%20endoscopes_FINAL.pdf, accessed 6/18/2016
- Standards of Infection Prevention in the Gastroenterology setting 2015, SGNA, http://www.sgna.org/Portals/0/Standard%20for%20Infection%20Prevention_FINAL.pdf, accessed 1/18/2016
- Interim Protocol for Healthcare Facilities regarding Surveillance for Bacterial Contamination of Duodenoscopes after reprocessing, CDC, <http://www.cdc.gov/hai/organisms/cre/cre-duodenoscope-surveillance-protocol.html>, accessed 1/18/2016
- Disinfection of Healthcare Equipment, CDC, http://www.cdc.gov/hicpac/Disinfection_Sterilization/3_DisinfectEquipment.html, accessed 1/18/2016

Endoscope Reprocessing: Facing the new challenges

?

Questions

Endoscope Reprocessing: Facing the new challenges

V. Robin O. Novak, RN CIC
robin@excellentiagroup.com
636-875-5088 ext. 101
